extend numerical radius for adjointable operators on Hilbert C^* -modules
نویسندگان
چکیده مقاله:
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
منابع مشابه
*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
متن کاملPerturbation of Adjointable Mappings on Hilbert C-modules
Let X and Y be Hilbert C∗-modules over a C∗-algebra, and φ : X ×Y → [0,∞) be a function. A (not necessarily linear) mapping f : X → Y is called a φ-perturbed adjointable mapping if there exists a (not necessarily linear) mapping g : Y → X such that ‖〈f(x), y〉 − 〈x, g(y)〉‖ ≤ φ(x, y) (x ∈ X , y ∈ Y). In this paper, we investigate the generalized Hyers–Ulam–Rassias stability of adjointable mapping...
متن کاملProducts Of EP Operators On Hilbert C*-Modules
In this paper, the special attention is given to the product of two modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented that imply the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved that $P(RPQ)$ is idempotent, if $RPQ$†</...
متن کاملStability of Adjointable Mappings in Hilbert C-Modules
The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules are investigated. As a result, we get a solution for stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras. ∗2000 Mathematics Subject Classification. Primary 39B82, secondary 46L08, 47B48, 39B52 46L05, 16Wxx.
متن کاملRegular Operators on Hilbert C * -modules
A regular operator T on a Hilbert C *-module is defined just like a closed operator on a Hilbert space, with the extra condition that the range of (I + T * T) is dense. Semiregular operators are a slightly larger class of operators that may not have this property. It is shown that, like in the case of regular operators, one can, without any loss in generality, restrict oneself to semiregular op...
متن کاملThe reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules
Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 15
صفحات 81- 86
تاریخ انتشار 2018-10-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023